精品91麻豆免费免费国产在线_男女福利视频_国产一区二区三区小向美奈子_在教室里和同桌做校园h文

當前位置:

2014年初級統計師統計基礎知識考點5

發表時間:2014/3/21 14:56:36 來源:互聯網 點擊關注微信:關注中大網校微信
關注公眾號

為了幫助考生更好的備考2014年統計師考試中國統計師考試網小編特為考生搜集整理了2014年統計師知識點,希望能夠對考生全面熟悉統計師考試課程有所幫助!

統計學的研究方法

統計學作為一門方法論科學,具有自己完善的方法體系。統計研究的具體方法有很多,這將在后續課程中學習,而從大的方面看,其基本研究方法有:

(一)、大量觀察法

這是統計活動過程中搜集數據資料階段(即統計調查階段)的基本方法:即要對所研究現象總體中的足夠多數的個體進行觀察和研究,以期認識具有規律性的總體數量特征。大量觀察法的數理依據是大數定律,大數定律是指雖然每個個體受偶然因素的影響作用不同而在數量上幾存有差異,但對總體而言可以相互抵消而呈現出穩定的規律性,因此只有對足夠多數的個體進行觀察,觀察值的綜合結果才會趨向穩定,建立在大量觀察法基礎上的數據資料才會給出一般的結論。統計學的各種調查方法都屬于大量觀察法。

(二)、統計分組法

由于所研究現象本身的復雜性、差異性及多層次性,需要我們對所研究現象進行分組或分類研究,以期在同質的基礎上探求不同組或類之間的差異性。統計分組在整個統計活動過程中都占有重要地位,在統計調查階段可通過統計分組法來搜集不同類的資料,并可使抽樣調查的樣本代表性得以提高(即分層抽樣方式);在統計整理階段可以通過統計分組法使各種數據資料得到分門別類的加工處理和儲存,并為編制分布數列提供基礎;在統計分析階段則可以通過統計分組法來劃分現象類型、研究總體內在結構、比較不同類或組之間的差異(顯著性檢驗)和分析不同變量之間的相關關系。統計學中的統計分組法有傳統分組法、判別分析法和聚類分析法等。

(三)、綜合指標法

統計研究現象的數量方面的特征是通過統計綜合指標來反映的。所謂綜合指標,是指用來從總體上反映所研究現象數量特征和數量關系的范疇及其數值,常見的有總量指標、相對指標,平均指標和標志變異指標等。綜合指標法在統計學、尤其是社會經濟統計學中占有十分重要的地位,是描述統計學的核心內容。如何最真實客觀地記錄、描述和反映所研究現象的數量特征和數量關系,是統計指標理論研究的一大課題。

(四)、統計模型法

在以統計指標來反映所研究現象的數量特征的同時,我們還經常需要對相關現象之間的數量變動關系進行定量研究,以了解某一(些)現象數量變動與另一(些)現象數量變動之間的關系及變動的影響程度。在研究這種數量變動關系時,需要根據具體的研究對象和一定的假定條件,用合適的數學方程來進行模擬,這種方法就叫做統計模型法。

(五)、統計推斷法

在統計認識活動中,我們所觀察的往往只是所研究現象總體中的一部分單位,掌握的只是具有隨機性的樣本觀察數據,而認識總體數量特征是統計研究的目的,這就需要我們根據概率論和樣本分布理論,運用參數估計或假設檢驗的方法,由樣本觀測數據來推斷總體數量特征。這種由樣本來推斷總體的方法就叫統計推斷法。統計推斷法已在統計研究的許多領域得到應用,除了最常見的總體指標推斷外,統計模型參數的估計和檢驗、統計預測中原時間序列的估計和檢驗等,也都屬于統計推斷的范疇,都存在著誤差和置信度的問題。在實踐中這是一種有效又經濟的方法,其應用范圍很廣泛,發展很快,統計推斷法已成為現代統計學的基本方法。

相關文章:

2014年初級統計師統計基礎知識考點匯總

2014年初級統計師基礎理論及相關知識輔導筆記匯總

2014年統計從業資格考試統計學基礎備考資料匯總

2014年統計師《經濟學基礎知識》章節講義匯總

2014年統計師考試招生簡章>>>

更多關注:2014統計師考試時間 統計師考試培訓 在線模考 免費短信提醒>>

(責任編輯:xy)

2頁,當前第1頁  第一頁  前一頁  下一頁
最近更新 考試動態 更多>

近期直播

免費章節課

課程推薦

      • 統計師

        [協議護航-退費班]

        12大模塊 準題庫資料 協議退費校方服務

        4800起

        初級 中級

        761人正在學習

      • 統計師

        [協議護航-暢學班]

        12大模塊 準題庫資料 協議續學校方支持

        2980起

        初級 中級

        545人正在學習

      • 統計師

        [豐羽計劃-暢學班]

        4大模塊 題庫練習 精品課程

        1680起

        初級 中級

        445人正在學習

      各地資訊