為了幫助考生系統的復習2014年二級建造師考試課程,全面的了解二級建造師考試教材的相關重點,中大網校二級建造師考試網為大家整理二級建造師考試科目《機電工程專業實務》相關知識點,希望對您有所幫助!
第二講 1M410000機電安裝工程技術基礎知識
1M411024 變壓器、三相交流異步電動機的基本結構及其工作原理
電力變壓器和三相異步電動機是機電安裝工程中經常遇到的主要電氣設備,且他們的電磁原理有著共同點,變壓器的一次、二次線圈是固定的,而三相異步電動機是一次線圈固定,二次線圈是旋轉的。
(1)變壓器的結構特征
*按結構形式有
鐵芯結構:心式和殼式。
繞組數量:雙繞組和三繞組。
相數:單相和三相。
絕緣介質:油浸式和干式。
冷卻方式:空氣、油自然循環、強迫油循環、強迫油循環導向和水冷卻等。
*油浸變壓器的結構特征
油浸變壓器的結構特征:器身結構有油箱和鐵芯,油箱上有散熱器等零部件,油浸變壓器的鐵芯和繞組都浸在絕緣油中。冷卻方式有油浸自冷式和強迫循環水冷式等。
*樹脂絕緣干式變壓器的結構特征
干式變壓器的鐵芯和繞組都不浸在任何絕緣液體中,它一般用于安全防火要求較高的場合。
(2)變壓器的分類及電磁工作原理
*按用途分:發電機變壓器、聯絡變壓器、降壓變壓器和配電變壓器等統稱為電力變壓器;干式變壓器、電爐變壓器、變流變壓器、試驗變壓器、船用變壓器、中頻變壓器、接地變壓器等統稱為特種變壓器;電流互感器、電壓互感器、調壓器、電抗器等的工作原理及結構型式類似于變壓器。當然還可以按額定電壓的高低、冷卻方式、線圈耦合方式、相數、線圈數、線圈導線材質、調壓方式等來分類。
*變壓器的電磁工作原理
根據電磁感應定律、電動勢平衡規律:
U1=E1=4.44fN1Φm.
U2=E2=4.44fN2Φm
U1/U2=N1/N2 I1/I2=N2/N1
變壓器的容量為U1Il=U2I2,單位為伏安(VA),當變壓器的一、二次電壓、電流為額定值時,則變壓器的容量為額定容量。
三相變壓器的基本原理和單相變壓器的原理一樣,僅是三個相角差互為120.的交流電源接人同一臺具有三個不同磁路鐵芯的變壓器。
(3)三相交流異步電動機的結構、分類及電磁原理
*小型籠型異步電動機結構主要包括:
定子、轉子、定子繞組、風扇、風罩、出線盒、軸承、端蓋、外蓋、內蓋等。
*中型繞線型異步電動機結構主要包括:
定子、轉子、定子繞組、轉子繞組、出線盒、連接環、軸承、軸承內蓋、軸承外蓋、軸承套、端蓋等。
*異步電動機的分類:
異步電動機是機電安裝工程中應用最廣的電動機,在各種電氣傳動中約占90%,在電網總負荷中約占60%。
軸中心高630mm以上為大型電動機、軸中心高80一630mm為中小型電動機、折算1500r/min時額定連續功率等于小于llkW稱為小功率電動機。
按轉子結構可分為籠型異步電動機、繞線轉子異步電動機、換向器異步電動機。
*異步電動機的電磁工作原理:
⑴ 三相異步電動機的三組定子繞組在空間分布為電磁角相互差120',通以三相交流電流后,在定子與轉子的氣隙間產生旋轉磁場,旋轉磁場的轉速no=60f/p,
⑵ 旋轉磁場切割定子、轉子繞組而分別在繞組中感生 電動勢,轉子電動勢在自成閉合電路的轉子繞組中產生電流(籠型電動機轉子制造時已成閉合電路,繞線型電動機要通過轉子滑環外接電阻等形成閉合電路)。
⑶轉子電流與旋轉磁場作用產生轉矩,拖動機械負載旋轉,轉子繞組與氣隙磁場相對運動產生轉子電流和轉矩是實行能量轉換的必備條件。
n1=60f/p=sn0
1M411030 流體力學的基礎知識
1M411031 流體流動參數的相互關系
流體力學中的流體包括液體和氣體。流體的流動參數包括流體流動時的物理性質、靜止流體的力學特性和流體運動狀態的參數。流體的基本方程式反映了流體主要流動參數的相互關系。
(1)流體的物理性質
*流體的質量
*流體的密度:單位體積的流體所具有的質量稱為流體的密度
*流體的比容:單位質量的流體所占有的體積稱為比容,
*密度與比容互為倒數。
*流體的重量:作用在流體上的重力稱為流體的重量,用G來表示,其單位是N.
*流體的重度;作用在單位體積流體上的重力稱為流體的重度。
*流體的壓縮性:流體占有的體積將隨作用在流體上的壓力和溫度而變化。
*流體的膨脹性:溫度升高時,流體的體積將增大,這種特性稱為流體的膨脹性,氣體屬于不能忽略其壓縮性和膨脹性的流體(稱為可壓縮流體),壓力和溫度的變化對其密度和重度的變化影響很大,熱力學中用狀態方程來反映他們相互的關系。當氣體的壓力和溫度變化很小時(如通風系統)或其相對固體的運動速度比當時溫度下的音速小得多時,由于其密度變化很小,可以近似地將密度看作常數,按不可壓縮流體來處理。
*流體的黏性:當流體中發生了層與層之間的相對運動時,形成的內摩擦力或黏滯力,即流體的粘性。為了維持流體的運動,必須消耗能量以克服內摩擦力造成的能量損失。
溫度對流體的黏滯系數影響很大,但對液體和氣體的影響相反,當溫度升高時,液體的黏滯系數降低,流動性增加,而氣體的黏滯系數增大。
(2)靜止流體的力學特性 :
*作用在流體上的力大致可分為表面力和質量力(或稱體積力)這兩類。
*流體的靜壓力是指流體單位面積上所受到的垂直于該表面的力。
*重力作用下,液體內部壓力隨深度變化,深度相等的各點靜壓力相等。P=P0+ρgh
*靜止流體的浮力:流體作用在物體上的浮力等于該物體排開的相同體積流體的重量,它與物體浸入的深度無關,方向永遠向上且通過浮心,此即阿基米德原理。
*液體的表面張力:液體表面層內的分子吸引力和液體表面與周邊介質分子之間的吸引力不平衡的表現,它沿液體表面作用并且和液體的邊界垂直,把液體表面層的分子緊緊拉向液體內部。
*液體的毛細現象:把一根細玻璃管插入液體中,當液體分子間的吸引力大于或小于 液體分子與玻璃分子間的吸引力時,會出現細玻璃管中的液面成凸形或凹形液面,這種現象稱為毛細現象。毛細管中液面上升或下降的高度與液體的表面張力有關。
(3)流體的運動參數:流體的運動可分解為平移、旋轉和變形三種狀態,描寫這三種狀態的運動參數有速度、加速度、角速度等。
(4)運動流體的基本方程式 :
①連續方程式v1A1=v2A2
②動量方程式ΣF=m(v1-v2
IM411032 流體的阻力及損失式
流體的阻力是造成能量損失(即阻力損失)的原因。一種是由于流體的黏滯性和慣性引起的沿程阻力損失;另一種是由于管路界面突然擴大或縮小等原因,固體壁面對流體的阻滯作用和擾動作用引的稱為局部阻力損失。
液體阻力損失通常用單位重量流體的能量損失(或稱水頭損失)h1來表示,氣體則常用單位體積內的流體的能量損失(或稱壓強損失)》p1來表示。
(1)沿程阻力與沿程阻力損失
(2)局部阻力與局部阻力損失
(3)層流阻力與紊流阻力
化,顯示出不規則性,但是整個流體仍沿著主流方向運動o
*在圓管中,流體的流動狀態和平均流速v、管徑d運動黏滯系數 有關。將上述三個參數合成一個無因次數,稱為雷諾數,用Re表示。
實驗表明,臨界雷諾數值約為20000.雷諾數大于2000時,流態為紊流;雷諾數小于2000時為層流。紊流阻力比層流阻力大得多。
(4)流體能量總損失
*根據長期實踐的經驗,把能量損失的計算問題轉化為求阻力系數的問題。把能量損失寫成流速水頭倍數的形式,在列能量方程時,可以把它與流速水頭合并成一項以便于計算。由于影響的因素復雜,公式中兩個無因次系數入和串,必須借助分析一些典型的實驗成果,用經驗的或半經驗的方法求得。
*流體能量總損失:
流體能量總損失等于各管段沿程損失與各局部損失的總和。
(5)減少阻力的措施
*減小管壁的粗糙度和用柔性邊壁代替剛性邊壁;
*防止或推遲流體與壁面的分離,避免旋渦區的產生或減小旋渦區的大小和強度。
*對于管道的管件采取的減小阻力措施:一般直徑d較小的彎管,合理地采用曲率半徑尺,可以減少阻力。截面較大的通風彎管需安裝形式合理的導流片,達到減少局部阻力的效果。對于管子截面變化的變徑管,應采用一定長度的漸縮管或漸擴管。對于三通或四通可設置導流隔板。
*在流體內部投加極少量的添加劑,使其影響流體運動的內部結構來實現減阻。
(6)減少泵與風機的能量損失
*泵與風機的能量損失通常其產生原因分為三類,即水力損失、容積損失、機械損失。
*水力損失:大小與過流部件的幾何形狀、壁面粗糙度以及流體的黏性密切相關。水力損失包括:進口損失、撞擊損失、葉輪中的水力損失、動壓轉換和機殼出口損失。
*容積損失;通常用容積效率表示容積損失的大小。減小回流量的措施通常是盡可能增加密封裝置的阻力;盡可能縮小密封環的直徑,從而降低其周長流通面積減少。
*機械損失:泵和風機的機械損失包括軸承和軸封的摩擦損失;葉輪轉運時其外表與機殼內流體之間發生的圓盤摩擦損失。通常用機械效率表示機械損失的大小。
*泵與風機的全效率等于水力效率、容積效率、機械效率的乘積。
*泵與風機的實際性能曲線:流量與揚程(Q-H)曲線大致可分為三種: a為平坦型,b為陡降型c為駝峰型。平坦型的流量與揚程曲線表示當流量變動很大時能保持基本恒定的揚程。陡降型曲線則相反,鄖流量變化時,揚程的變化相對較大。駝峰型曲線表示當流量是自零逐漸增加時,揚程上升達到最高值后開始下降。駝峰型的泵或風機在一定的運行條件中,可能出現不穩定工作,這種不穩定工作,顯然應當避免。
編輯推薦:
更多關注:2013年二級建造師考試成績查詢時間 合格標準 二級建造師考試網絡輔導
(責任編輯:中大編輯)
近期直播
免費章節課
課程推薦
二級建造師
[協議護航班-不過退費]
7大模塊 準題庫高端資料 研發資料
二級建造師
[沖關暢學班]
5大模塊 準題庫高端資料 研發資料
二級建造師
[精品樂學班]
3大模塊 準題庫高端資料 研發資料